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Abstract 

The stress state in an ela,stic cylindrical coupon of 
finite dimensions on a rigmid, frictionless foundation 
under axisymmetric contact loading is studied. The 
axisymmetric stress analysis is devoted to an inves- 
tigation of the eflects of the free surfaces of the plate 
on the surface radial ten,sile stress field, which is 
particularly important for an assessment of crack 
initiation in brittle materials. Attention is focused on 
cases where the ratio of plate thickness (h) and plate 

radius (w) to contact radius (a) fall in the range 0.5 
-C h/a < 10, and 1 < w/a < 5, respectively, which 
is the region of both experimental and 
interest. 0 1997 Elsevier Science Ltd 

theoretical 

1 Introduction 

The mechanics of the indentation of brittle materi- 
als has been extensively investigated ever since the 
celebrated studies of Auerbach’ and Roesler2 on 
conical fractures at elastic contact between curved 
glass surfaces. An overview of the theories for 
studying the fracture mechanics under different 
contact conditions for a punch indenting the half- 
space can be found in Lawn3 and Cook and 
Pharr.4 It is clear that thle physical quantity pro- 
pelling almost any crack in a brittle material is the 
maximum tensile principal stress present, and it 
may be remarked here that in plane contacts all 
three principal stresses are either negative or zero 
everywhere, whilst in axisymmetric problems pos- 
sessing the same geometric form, significant tension 
exists. Therefore, plane configurations differ quali- 
tatively from axisymmetric configurations. Further, 
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it is customary when carrying out indentation tests 
on brittle materials to use relatively thin coupons, 
particularly in the case of plate glass samples, and 
here the idealisation of the sample as a half-space 
may be called into question. Moreover, indentation 
near free surfaces and/or interfaces gives insight into 
many material characteristics. It is the intention in 
the present paper to investigate the effects of both the 
thickness and position of the remote in-plane bound- 
ary on the stress state, and in particular to focus on 
the surface or near-surface tension stresses, as these 
are of the greatest practical relevance. Particular 
attention will also be given to determining the 
influence of the material’s Poisson’s ratio on the 
surface stress, as it has quite a marked influence. 

There are two general methods in which contact 
problems for a large plate w/a + 00 (where 
w = plate radius and a=contact radius), i.e. an 
elastic slab, may be formulated (we are not con- 
sidering the use of the plate theory), viz. by the use 
of a Hankel transfoim5 or by the application of 
boundary elements to a solution based on a full- 
space formulation. 6 In the present work the latter 
approach is used, as this approach readily per- 
mits the influence of the other remote boundary 
to be found, i.e. the case of finite w/a. Axisym- 
metric boundary elements are used to study the 
indentation of a circular elastic plate by a cen- 
trally positioned axisymmetric punch, as shown 
in Fig. 1. 

Several notable studies of the layered contact 
problem exist in the literature.7-9 In particular, for 
a rigid frictionless indenter, Jaffar7 reduces the 
governing integral equation to a system of linear 
equations where the unknowns are the coefficients 
in the expansion of the pressure in terms of modi- 
fied Legendre polynomials. It is shown that, for a 
spherical punch, the pressure distribution is signi- 
ficantly non-elliptical in form only for ratios h/a 
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Fig. 1. Geometry and co-ordinate system of the problem. 

(where h =plate thickness) smaller than about 
unity. Moreover, the higher the Poisson’s ratio, the 
greater the effect of finite plate thickness on the 
pressure distribution. For the flat punch, the effect 
of both the ratio h/a and Poisson’s ratio on the 
form of the pressure distribution is stronger than 
for the Hertz’ case. 

Very few systematic studies of the interior, and 
in particular of the surface tensile stresses field, exist 
in the literature, and the effect of w/a is not fully 
addressed. Since, in the limiting case, h/a + cc and 
w/a + 00, the surface radial stresses become inde- 
pendent of the exact pressure distribution,‘O the 
investigation will be conducted principally for two 
limiting cases of pressure distribution, viz. elliptical 
and the inverse square-root distributions, and as a 
further comparison the uniform pressure distribution 
will also be examined. For a sample of finite dimen- 
sions the surface stress state is no longer indepen- 
dent of the pressure distribution, but a range of 
distributions will be considered, providing useful 
information on the interior stress state. These will 
demonstrate that the stress state depends only 
weakly on the precise pressure distribution, parti- 
cularly in the region just outside the contact 
patch where the tensions arise. This insensitivity 
is not apparent from an application of St 
Venant’s principle. 

In all cases, the effect of interfacial shearing 
tractions will be neglected, since they are absent in 
the case of elastic similar contact when both bodies 
are large, and otherwise depend on several 
parameters, viz. a dimensionless combination of 
the elastic constants of indenter and coupon, the 
layer thickness and radius, and the friction coeffi- 
cient. 

2 Standard results 

It will be convenient to normalise many of the 
results with respect to those known in closed form 
for a half-space formulation. This approach means 
that it is also possible to see explicitly how the 

effect of a finite thickness of plate affects the solu- 
tion. For a sphere of radius R in contact with a 
half-space under a load P, the contact area radius a 
is given by” 

a = (+$)1’3 

with E’ = l-u? 1 $ -l 
> *+E 

(1) 

where E, u are the Young’s modulus and the 
Poisson’s ratio of the half-space, and Ei, Vi are 
those of the sphere. Only normal pressure is pre- 
sent, and referring to the co-ordinate system in 
Fig. 1, the pressure is given by” 

PC4 = ;Pm \i 0 I- r 2,r<a, 
a (2) 

where pm is the mean pressure, given by pm = 5. 
Note that, for the reasons set out above, this solu- 
tion is exact only when either the two bodies are 
elastically similar, or the contact is frictionless, e.g. 
by being lubricated. Also, although the first of 
these conditions is sufficient to ensure that the sur- 
face radial displacements are equal in the case of a 
half-space, this does not apply when either con- 
tacting body is of finite size. Nevertheless, experi- 
ence has indicated that the influence of radial 
shearing tractions on the normal pressure distribu- 
tion is often small and short-lived,12 and the solu- 
tion found is expected to be very close to the exact 
answer even when frictional effects are present. 
Turning to the case of a flat punch, it is clear that 
the ratio h/a is constant during the load applica- 
tion, in contrast to an incomplete contact. The 
contact pressure distribution when the punch is in 
contact with a half-space is given by” 

p(r) = iPin r < a, (3) 

and, as a consequence of the inverse square-root 
singularity in the pressure, the stress state is char- 
acterised by very high local gradients, again in con- 
trast to the Hertz case. The flat punch, therefore, 
introduces a significant amount of local plasticity in 
the material. The fracture process is also strongly 
dependent on the mode II stress intensity factor, 
because of the sharp corner of the punch. 

The details of the internal stress field clearly dif- 
fer for each of the geometries cited. However, in an 
interesting and illuminating article, Waylo shows 
that for any axisymmetric distribution of contact 
pressure over the surface of a half-space, the sur- 
face radial stress takes the same form, correspond- 
ing to the radial stress field due to a concentrated 
load of same resultant, applied at the centre of the 
contact area, viz.: 
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0,00(r) = 
1-2v 
TP”(Lf)2’ r>a,forz=O 

I (4) 

The universality of this result clearly means that the 
stress responsible in most cases for causing a sur- 
face defect to extend is independent of the precise 
form of the indenter geometry, and explains the 
similarity of the characteristics of ring cracks 
formed under flat-ended and spherical indenters. 
One of the objectives of this paper is to see how 
this result is weakened when the dimension of the 
body is finite. 

3 Boundary element formulation 

The geometry examined :is that shown in Fig. 1, 
and the problem is cast as a boundary value 
problem of the first kind; the pressure distribution 
is taken to be elliptical, inverse square root, or 
uniform. The Boundary Element Method (BEM) is 
employed in a standard axisymmetric form. It is 
not possible to give a detailed explanation of the 
technique, for which the book by Becker6 should 
be consulted; a complete listing of the code needed 
is given therein. 

There are different ways of viewing the method, 
but the physically most direct is to think of the 
boundary elements themselves as quantities which 
induce a known state of stress anywhere within an 
infinite domain. Separatel:y, the stresses induced in 
an infinite domain by the contact loading are 
known, and the strength of the boundary elements 
are adjusted until the net traction appearing across 
each element vanishes. This provides a set of simul- 
taneous equations for the strength of the elements 
which may be solved. The state of stress within the 
finite body is then the superposition of the effect of 
the contact loading and the elements employed. 

In the implementation employed isoparametric 
quadratic elements were used, and it was found 
that typically about 100 elements were needed, 
graded in size towards the contact itself. This gave 
an accuracy, for the radial surface stress, of better 
than I%*. 

4 Results 

4.1 First free-surface effect-thickness (A/a) 
The plate has a radius much larger than the radius 
of the contact area (w/a= 5). Figures 2(a) and (b) 
show the surface radial stress as a function of 

*Except for some very taxing cases, such as the inverse square- 
root pressure distribution with low w/a ratios, but these results 
are not important for the scope of the present investigation. 

radial position for the case of an elliptical pressure 
distribution, for h/a = 2 and h/a = 1, and for a range 
of values of Poisson’s ratio. In order to illustrate 
the stress state as precisely as possible the results 
are displayed, only in Fig. 2, in terms of a deference 
from the half-space solution, i.e. as 
@IP, = (0, - ~,oo)l~m. The differences from the 
Hertz solution clearly increase as the thickness of 
the material is decreased, which is as expected. 
Moreover, the higher the Poisson’s ratio the 
greater the difference in each case. It should be 
noted that the half-space solution is given by eqn 
(4), and the peak value of the radial stress is at the 
edge of the contact where, for a material with no 
Poisson’s effect, it takes the value l/2. The differ- 
ence between the half-space and layer solution is 
therefore significant; for the case when h/a = 1 it 
may amount to 20%. 

(a) 0.15 
1 

0.125 
i 

0.1 - Poisson’s ratio=O.O. 0.1, 0.2, 0.3, 0.4, 0.5 

1 
-0.025 t--_ , I I I I 

1 1.5 2 2.5 3 
rla 

(b) 
0.25 

7 

1 1.5 2 
rla 

2.5 3 

Fig. 2. Radial stress field on the surface of the plate, given as 
difference from the half-space analytical solution: (a) h/a=2, 
(b) h/a = 1. Plate radius to contact radius ratio W/U = 5. Calcu- 

lated for an elliptical pressure distribution. 
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The influence of the pressure distribution was 
systematically analysed. The case of a flat punch 
was treated next. This has the feature that the 
contact radius is fixed, and hence the ratios h/a and 
w/a remain fixed as the load is increased. The 
contact problem between a flat-ended punch and a 
half-space may only be treated analytically when 
the punch is rigid and, as in this paper radial fric- 
tional effects will be ignored, the exact solution is 
formally valid only when the half-space is incom- 
pressible (u = l/2), unless the contact is frictionless. 
A pressure distribution given by eqn (3) will there- 
fore be taken as the half-space solution for all 
Poisson’s ratios, although this is strictly true only 
for a frictionless contact. An unexpected feature 
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Pressure 

distribution 
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..__.__._. uniform 

inv. sq. root 

1 1.5 2 2.5 3 
rla 

Fig. 3. Maximum radial stress field on the surface of the plate 
for h/a = 1 and different pressure distributions. 
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distribution) 

0 0.1 0.2 0.3 0.4 0.5 
Poisson’s ratio 

Fig. 4. Maximum radial stress field on the surface of the plate 
as a function of the Poisson’s ratio. Plate radius to contact 

radius ratio w/a = 5. 

emerged, viz. that the pressure distribution affects 
the radial stress field on the surface only with very 
thin plates. Figure 3 shows that with h/a= 1 this 
effect is already negligible. (Moreover, the maxi- 
mum radial stress is found always to be on the 
contact edge, i.e. r/a = 1). 

As it is the peak surface tension which is 
responsible for driving surface defects, the maxi- 
mum tension (i.e. at r/a= 1) is re-plotted in Fig. 4 
(dimensionless thicknesses of h/a = O-5, O-75 only 
used for the case of elliptical loading). 

4.2 Second free-surface effect-radius of coupon 

(w/u) 
The plate thickness was set to a much larger value 
than the radius of the contact area (h/a = 5). Figure 
5 shows the surface radial stress as a function of 
position for the case of an elliptical and inverse 
square-root pressure distribution, for w/a = 1.1, 
1.5, 3, 5, for the two limiting cases u = 0.0, u = 0.5 

(a) 0.6 h/a=5 
Pressure 

distribution 

~ ellipccal 

---------- inv. square root 

Poisson’s ratio = 0.0 

w/a 

2 
r/a 

2.5 

distribution 

~ elliptical 

---------- inv. square mot 

1 1.5 2 2.5 3 
r/a 

Fig. 5. Radial stress field on the surface of the plate: (a) u = 0.0, 
(b) v= 0.5. Plate thickness to contact radius ratio h/a = 5. 
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(Figs 5(a) and (b), respectively). The difference 
from the Hertz solution is marginal close to the 
contact disk, where fracture may initiate, for w/a > 3 
and a material showing no Poissson’s effect, 
whereas the differences are significant at this loca- 
tion for an incompressible material- eqn (4) shows 
that for material of this kind no radial surface 
stress should arise exterior to the contact zone. 
Moreover, the radial stresses are sensitive to the 
precise form of the pressure distribution only for 
w/a < 3. Further, they are more strongly dependent 
on the indenter shape for an incompressible mate- 
rial than one showing no Poisson’s effect. The 
important point to note here is that for materials 
showing no Poisson’s effect there is generally a 
decrease of the maximum radial stress, whilst for 
incompressible materials there is a range of value 
for which there is a substantial increase in tension, 
associated with the finite specimen radius. 

Figure 6 again summarises the values of the 
maximum tension adjacent to the contact zone. 
The values are independent of the pressure distri- 
bution for w/a > 3. The lines for the cases w/a = 1.5, 
1.1 are, as might be expected from the previous 
diagrams, very different for elliptical and inverse 
square-root pressure distributions (the case of very 
small plate radius w/a- l is particularly taxing for 
the numerical solution). It will be appreciated that 
the differences from the half-space solution (the 
line v) are again generally more significant for 
higher-Poisson’s ratio, and that the effect of Pois- 
son’s ratio is linear for almost all cases. 

h/a=5 
Pressure 

distribution 

_C elliptical 

--o-m inv. square root 

0 0.1 0.2 0.3 0.4 0.5 
PokixNl’S ratio 

Fig. 6. Maximum radial stress field on the surface of the plate 
as a function of the Poisson’s ratio. Plate thickness to contact 

radius rati’o h/a = 5. 

4.3 Combined free-surface effects (h/a and w/a) 
The ratio of the plate thickness to radius of the 
contact was set to h/u= 2. Figure 7 shows the 
surface radial stress as a function of position for 
the case of an elliptical and inverse square-root 
pressure distribution, for w/a = 1.1, 1.5, 3, 5 in the 
two limiting cases of material showing no Poisson’s 
effect, and an incompressible material (Figs 7(a) 
and (b), respectively). It can be seen that the sepa- 
rate effects tend to combine linearly, but in the case 
of w/a 5 1.5, the radial stresses are practically 
coincident with those of the previous large thick- 
ness plate (h/u = 5), indicating that the effect of w/a 
tends to dominate the problem. 

5 Conclusions 

For an elastic plate of finite dimensions on a rigid 
frictionless foundation under axisymmetric contact 
loading, the differences and the limits of applicability 
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Fig. 7. Radial stress field on the surface of the plate: (a) u= 0.0, 
(b) u = 0.5. Plate thickness to contact radius ratio h/a = 2. 
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of the half-space approximation have been investi- 
gated, with respect to the effect of the lower free- 
surface and the external free-surface. A detailed set 
of diagrams has been given for effects of each free 
boundary on the radial tensile stress field on the 
surface of the plate, and the significant effect of 
different Poisson’s ratios noted. The surface radial 
stresses are independent of the actual pressure dis- 
tribution for moderately thin or wide plates, i.e. for 
h/a > 1 and w/a > 3. 
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